Enumerative Geometry of Plane Curves of Low Genus

نویسنده

  • RAVI VAKIL
چکیده

We collect various known results (about plane curves and the moduli space of stable maps) to derive new recursive formulas enumerating low genus plane curves of any degree with various behaviors. Recursive formulas are given for the characteristic numbers of rational plane curves, elliptic plane curves, and elliptic plane curves with fixed complex structure. Recursions are also given for the number of elliptic (and rational) plane curves with various “codimension 1” behavior (cuspidal, tacnodal, triple pointed, etc., as well as the geometric and arithmetic sectional genus of the Severi variety). We compute the latter numbers for genus 2 and 3 plane curves as well. We rely on results of Caporaso, Diaz, Getzler, Harris, Ran, and especially Pandharipande.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enumerative Geometry of Hyperelliptic Plane Curves

In recent years there has been a tremendous amount of progress on classical problems in enumerative geometry. This has largely been a result of new ideas and motivation for these problems coming from theoretical physics. In particular, the theory of Gromov-Witten invariants has provided powerful tools for counting curves satisfying incidence conditions. This theory has been most successful in d...

متن کامل

On the enumerative geometry of real algebraic curves having many real branches

Let C be a smooth real plane curve. Let c be its degree and g its genus. We assume that C has at least g real branches. Let d be a nonzero natural integer strictly less than c. Let e be a partition of cd of length g. Let n be the number of all real plane curves of degree d that are tangent to g real branches of C with orders of tangency e1; . . . ; eg. We show that n is finite and we determine ...

متن کامل

Counting Curves on Surfaces: a Guide to New Techniques and Results

1.1. Abstract and summary. A series of recent results solving classical enumerative problems for curves on rational surfaces is described. Impulse to the subject came from recent ideas from quantum field theory leading to the definition of quantum cohomology. As a by-product, formulas enumerating rational curves on certain varieties were derived from the properties of certain generating functio...

متن کامل

The Enumerative Geometry of Rational and Elliptic Curves in Projective Space

We study the geometry of moduli spaces of genus 0 and 1 curves in P with specified contact with a hyperplane H. We compute intersection numbers on these spaces that correspond to the number of degree d curves incident to various general linear spaces, and tangent to H with various multiplicities along various general linear subspaces of H. (The numbers of classical interest, the numbers of curv...

متن کامل

Contributions to differential geometry of spacelike curves in Lorentzian plane L2

‎In this work‎, ‎first the differential equation characterizing position vector‎ ‎of spacelike curve is obtained in Lorentzian plane $mathbb{L}^{2}.$ Then the‎ ‎special curves mentioned above are studied in Lorentzian plane $mathbb{L}%‎‎^{2}.$ Finally some characterizations of these special curves are given in‎ ‎$mathbb{L}^{2}.$‎

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008